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Abstract

We show that the Lie bracket of an arbitrary vector field with a Hamiltonian
vector field is the sum of a Hamiltonian vector field and an energy-preserving
vector field, but that not all vector fields can be so decomposed.
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Mathematics Subject Classification: 53D17, 37J05

We present an algebraic property of a set of vector fields on a symplectic or Poisson manifold
that, while simple, does not appear in the standard sources (e.g. [1, 2]). Its novel feature is
that it relates non-Hamiltonian and Hamiltonian vector fields. It was discovered in the course
of an investigation of series of elementary differentials of a vector field used in geometric
numerical integration [3].

Let (P, {, }) be an n-dimensional Poisson manifold and H : P → R a real (C∞) function
on P that we call the energy. Let X be the Lie algebra of (C∞) vector fields on P. The two
structures {, } and H endow X with a distinguished element, namely the Hamiltonian vector
field XH , and with two Lie subalgebras: XHam, the Lie algebra of Hamiltonian vector fields on
P, and XH , the Lie algebra of energy- (i.e. H-) preserving vector fields on P. The Hamiltonian
vector field XH lies in both XHam and XH .

Elements of XH are described locally by n − 1 scalar functions, while elements of XHam

are described by single scalar functions. Thus, it makes sense to ask if an arbitrary vector field
X (described by n scalar functions) is the sum of a Hamiltonian vector field and an energy-
preserving vector field. We shall see that this is (i) true locally near regular points of XH ,
(ii) not necessarily true near singular points of XH and (iii) true globally when X = [Z,XH ]
is the Lie bracket of an arbitrary vector field Z with XH . This provides a universal constraint
on the range of adXH

. We also have an algebraic description as follows.

Proposition 1. [X, XH ] ⊂ XHam + XH .
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Proof. Let Z ∈ X. We will show that the Hamiltonian part of [Z,XH ] can be taken to be
XZ(H). This will be true if the remainder [Z,XH ] − XZ(H) is energy-preserving, which can
be checked as follows:

([Z,XH ] − XZ(H))(H) = Z(XH (H)) − XH(Z(H)) − XZ(H)(H)

= 0 − XH(Z(H)) − {Z(H),H }
= −{H,Z(H)} − {Z(H),H }
= 0. �

The decomposition is of course only unique up to elements of XHam∩XH , the Hamiltonian
vector fields that conserve H.

Proposition 2. Let H ∈ C∞(P ) and Z be an arbitrary vector field on P. (i) In the neighborhood
of a regular point of XH , there is a Hamiltonian function K and an energy-preserving vector
field Y such that Z = XK + Y . (ii) In the neighborhood of a singular point of XH , such K and
Y need not exist.

Proof. For (i), we have to solve Z = XK + Y, Y (H) = 0 for K and Y. This requires
Z(H) = XK(H) + Y (H) = XK(H) = −XH (K), that is, the derivative of K along XH is
prescribed. In the neighborhood of any regular (i.e. nonzero) point of XH , there is a local cross-
section transverse to XH . Take K arbitrary on this cross-section and let Z(H) = −XH (K)

determine K uniquely away from the cross-section. Then Y (H) = Z(H) − XK(H) = 0, that
is, Y is energy-preserving. For (ii), take P = T ∗

R with coordinates (q, p) and the canonical
Poisson bracket, and let H = 1

2 (q2 + p2) so that the orbits of XH are circles centered on
the origin. The origin is a singular point of XH , and XH(K) = −Z(H) has a solution near
(0, 0) for K only if the integral around each circle centered on the origin of Z(H) is zero, but
there exist Z (for example, Z = q ∂

∂q
+ p ∂

∂p
, Z(H) = q2 + p2) for which these integrals are

nonzero. �

If P is symplectic, the restriction to regular points of XH is equivalent to a restriction to
regular points of H. But if P is not symplectic, one can take, for example, H to be a Casimir of
the Poisson bracket. Then XK and Y are both energy-preserving, so only energy-preserving
vector fields can be decomposed as a sum XK + Y .

One can also ask if the decomposition results in propositions 1 and 2 extend to subalgebras
of X. For the decomposition to make sense, XH must be an element of the subalgebra. We
study this for four cases: (1) vector fields with a symmetry, (2) volume-preserving vector
fields, (3) elementary differentials of a vector field and (4) vector fields with a first integral.

Case 1. If a (discrete or continuous) symmetry acts on P and the Poisson bracket, and if Z
and H share the symmetry, then XH also has the symmetry, and hence so do Z(H),XZ(H) and
the remainder (the energy-preserving part of the decomposition) [Z,XH ] − XZ(H). Thus,
proposition 1 holds for symmetric vector fields. Proposition 2(i) does not hold in the
symmetric case, by the following counterexample. Let P = T ∗

R as in proposition 2, let
H = p,XH = ∂

∂q
, and let the symmetry be translation in the q direction. The invariant

Hamiltonians are functions of p only and their vector fields have ṗ = 0, i.e. they are energy-
preserving. But not all invariant vector fields are energy-preserving. Tracing through the proof
of proposition 2(i) in this case shows the problem: if Z = a(p) ∂

∂q
+ b(p) ∂

∂p
, the differential

equation for K, ∂K
∂q

= −b(p), is invariant, but its solution K = −qb(p)+ c(p) is not invariant

(and nor is its Hamiltonian vector field XK = (−qb′(p) + c′(p)) ∂
∂q

+ b(p) ∂
∂p

). An invariant
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differential equation need not have any invariant solutions. Proposition 2(ii) holds in the
symmetric case, but is vacuous (take the trivial group).

Case 2. If Z and all Hamiltonian vector fields are volume-preserving, then so are [Z,XH ]
and XZ(H); so proposition 1 holds. Propositions 2(i) and (ii) hold too, because the volume-
preserving nature of Z does not enter the argument.

Case 3. On P = R
n with a constant Poisson structure, XH =: f , the linear combinations

of f and its derivatives (the elementary differentials of f ) span a Lie algebra B :=
span(f, f ′(f ), f ′′(f, f ), f ′(f ′(f )), . . .). It is typically countably infinite dimensional. Some
of its elements are energy-preserving (e.g. f ′(f ′(f ))) and some are Hamiltonian (e.g.
f ′′(f, f ) − 2f ′(f ′(f ))). If Z ∈ B then [Z,XH ] ∈ B and XZ(H) ∈ B, so the decomposition
holds in elementary differentials, too. Proposition 2(ii) holds too; the Hamiltonian and
energy-preserving elementary differentials, and those not in their span, can be enumerated [3].
Proposition 2(i) does not hold in this case, because a local decomposition would determine
the elementary differentials in a global decomposition.

Case 4. For vector fields with a given first integral, the decomposition result does not hold
even locally. Consider P = T ∗

R
2 with the canonical bracket and vector fields with first

integral q1. Then ∂H
∂p1

= 0 and the q1-component of Z is zero and we seek a decomposition

Z = XK + Y with Y (H) = 0 and ∂K
∂p1

= 0. As in the proof of proposition 2, we

need XH(K) = −Z(H) = −Zq2(q2, p1, p2)
∂H
∂q2

− Zp2(q2, p1, p2)
∂H
∂p2

; clearly, K cannot

be independent of p1 for all such Z. Replacing Z by, say, [˜Z,XH ] does not help, so proposition
1 does not hold in this case either.
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