The structure of a set of vector fields on Poisson manifolds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42142001
(http://iopscience.iop.org/1751-8121/42/14/142001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:35

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

The structure of a set of vector fields on Poisson manifolds

Robert I McLachlan
Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
E-mail: r.mclachlan@massey.ac.nz

Received 5 February 2009
Published 13 March 2009
Online at stacks.iop.org/JPhysA/42/142001

Abstract

We show that the Lie bracket of an arbitrary vector field with a Hamiltonian vector field is the sum of a Hamiltonian vector field and an energy-preserving vector field, but that not all vector fields can be so decomposed.

PACS number: 45.20.Jj
Mathematics Subject Classification: 53D17, 37J05

We present an algebraic property of a set of vector fields on a symplectic or Poisson manifold that, while simple, does not appear in the standard sources (e.g. [1, 2]). Its novel feature is that it relates non-Hamiltonian and Hamiltonian vector fields. It was discovered in the course of an investigation of series of elementary differentials of a vector field used in geometric numerical integration [3].

Let $(P,\{\}$,$) be an n$-dimensional Poisson manifold and $H: P \rightarrow \mathbb{R}$ a real $\left(C^{\infty}\right)$ function on P that we call the energy. Let \mathfrak{X} be the Lie algebra of $\left(C^{\infty}\right)$ vector fields on P. The two structures $\{$,$\} and H$ endow \mathfrak{X} with a distinguished element, namely the Hamiltonian vector field X_{H}, and with two Lie subalgebras: $\mathfrak{X}_{\mathrm{Ham}}$, the Lie algebra of Hamiltonian vector fields on P, and \mathfrak{X}_{H}, the Lie algebra of energy- (i.e. H-) preserving vector fields on P. The Hamiltonian vector field X_{H} lies in both $\mathfrak{X}_{\text {Ham }}$ and \mathfrak{X}_{H}.

Elements of \mathfrak{X}_{H} are described locally by $n-1$ scalar functions, while elements of $\mathfrak{X}_{\text {Ham }}$ are described by single scalar functions. Thus, it makes sense to ask if an arbitrary vector field X (described by n scalar functions) is the sum of a Hamiltonian vector field and an energypreserving vector field. We shall see that this is (i) true locally near regular points of X_{H}, (ii) not necessarily true near singular points of X_{H} and (iii) true globally when $X=\left[Z, X_{H}\right]$ is the Lie bracket of an arbitrary vector field Z with X_{H}. This provides a universal constraint on the range of $\mathrm{ad}_{X_{H}}$. We also have an algebraic description as follows.

Proposition 1. $\left[\mathfrak{X}, X_{H}\right] \subset \mathfrak{X}_{\mathrm{Ham}}+\mathfrak{X}_{H}$.

Proof. Let $Z \in \mathfrak{X}$. We will show that the Hamiltonian part of $\left[Z, X_{H}\right]$ can be taken to be $X_{Z(H)}$. This will be true if the remainder $\left[Z, X_{H}\right]-X_{Z(H)}$ is energy-preserving, which can be checked as follows:

$$
\begin{aligned}
\left(\left[Z, X_{H}\right]-X_{Z(H)}\right)(H) & =Z\left(X_{H}(H)\right)-X_{H}(Z(H))-X_{Z(H)}(H) \\
& =0-X_{H}(Z(H))-\{Z(H), H\} \\
& =-\{H, Z(H)\}-\{Z(H), H\} \\
& =0 .
\end{aligned}
$$

The decomposition is of course only unique up to elements of $\mathfrak{X}_{\mathrm{Ham}} \cap \mathfrak{X}_{H}$, the Hamiltonian vector fields that conserve H.

Proposition 2. Let $H \in C^{\infty}(P)$ and Z be an arbitrary vector field on P. (i) In the neighborhood of a regular point of X_{H}, there is a Hamiltonian function K and an energy-preserving vector field Y such that $Z=X_{K}+Y$. (ii) In the neighborhood of a singular point of X_{H}, such K and Y need not exist.

Proof. For (i), we have to solve $Z=X_{K}+Y, Y(H)=0$ for K and Y. This requires $Z(H)=X_{K}(H)+Y(H)=X_{K}(H)=-X_{H}(K)$, that is, the derivative of K along X_{H} is prescribed. In the neighborhood of any regular (i.e. nonzero) point of X_{H}, there is a local crosssection transverse to X_{H}. Take K arbitrary on this cross-section and let $Z(H)=-X_{H}(K)$ determine K uniquely away from the cross-section. Then $Y(H)=Z(H)-X_{K}(H)=0$, that is, Y is energy-preserving. For (ii), take $P=T^{*} \mathbb{R}$ with coordinates (q, p) and the canonical Poisson bracket, and let $H=\frac{1}{2}\left(q^{2}+p^{2}\right)$ so that the orbits of X_{H} are circles centered on the origin. The origin is a singular point of X_{H}, and $X_{H}(K)=-Z(H)$ has a solution near $(0,0)$ for K only if the integral around each circle centered on the origin of $Z(H)$ is zero, but there exist Z (for example, $Z=q \frac{\partial}{\partial q}+p \frac{\partial}{\partial p}, Z(H)=q^{2}+p^{2}$) for which these integrals are nonzero.

If P is symplectic, the restriction to regular points of X_{H} is equivalent to a restriction to regular points of H. But if P is not symplectic, one can take, for example, H to be a Casimir of the Poisson bracket. Then X_{K} and Y are both energy-preserving, so only energy-preserving vector fields can be decomposed as a sum $X_{K}+Y$.

One can also ask if the decomposition results in propositions 1 and 2 extend to subalgebras of \mathfrak{X}. For the decomposition to make sense, X_{H} must be an element of the subalgebra. We study this for four cases: (1) vector fields with a symmetry, (2) volume-preserving vector fields, (3) elementary differentials of a vector field and (4) vector fields with a first integral.
Case 1. If a (discrete or continuous) symmetry acts on P and the Poisson bracket, and if Z and H share the symmetry, then X_{H} also has the symmetry, and hence so do $Z(H), X_{Z(H)}$ and the remainder (the energy-preserving part of the decomposition) $\left[Z, X_{H}\right]-X_{Z(H)}$. Thus, proposition 1 holds for symmetric vector fields. Proposition 2(i) does not hold in the symmetric case, by the following counterexample. Let $P=T^{*} \mathbb{R}$ as in proposition 2, let $H=p, X_{H}=\frac{\partial}{\partial q}$, and let the symmetry be translation in the q direction. The invariant Hamiltonians are functions of p only and their vector fields have $\dot{p}=0$, i.e. they are energypreserving. But not all invariant vector fields are energy-preserving. Tracing through the proof of proposition 2(i) in this case shows the problem: if $Z=a(p) \frac{\partial}{\partial q}+b(p) \frac{\partial}{\partial p}$, the differential equation for K, $\frac{\partial K}{\partial q}=-b(p)$, is invariant, but its solution $K=-q b(p)+c(p)$ is not invariant (and nor is its Hamiltonian vector field $\left.X_{K}=\left(-q b^{\prime}(p)+c^{\prime}(p)\right) \frac{\partial}{\partial q}+b(p) \frac{\partial}{\partial p}\right)$. An invariant
differential equation need not have any invariant solutions. Proposition 2(ii) holds in the symmetric case, but is vacuous (take the trivial group).
Case 2. If Z and all Hamiltonian vector fields are volume-preserving, then so are [Z, X_{H}] and $X_{Z(H)}$; so proposition 1 holds. Propositions 2(i) and (ii) hold too, because the volumepreserving nature of Z does not enter the argument.

Case 3. On $P=\mathbb{R}^{n}$ with a constant Poisson structure, $X_{H}=: f$, the linear combinations of f and its derivatives (the elementary differentials of f) span a Lie algebra $\mathfrak{B}:=$ $\operatorname{span}\left(f, f^{\prime}(f), f^{\prime \prime}(f, f), f^{\prime}\left(f^{\prime}(f)\right), \ldots\right)$. It is typically countably infinite dimensional. Some of its elements are energy-preserving (e.g. $f^{\prime}\left(f^{\prime}(f)\right)$) and some are Hamiltonian (e.g. $\left.f^{\prime \prime}(f, f)-2 f^{\prime}\left(f^{\prime}(f)\right)\right)$. If $Z \in \mathfrak{B}$ then $\left[Z, X_{H}\right] \in \mathfrak{B}$ and $X_{Z(H)} \in \mathfrak{B}$, so the decomposition holds in elementary differentials, too. Proposition 2(ii) holds too; the Hamiltonian and energy-preserving elementary differentials, and those not in their span, can be enumerated [3]. Proposition 2(i) does not hold in this case, because a local decomposition would determine the elementary differentials in a global decomposition.

Case 4. For vector fields with a given first integral, the decomposition result does not hold even locally. Consider $P=T^{*} \mathbb{R}^{2}$ with the canonical bracket and vector fields with first integral q_{1}. Then $\frac{\partial H}{\partial p_{1}}=0$ and the q_{1}-component of Z is zero and we seek a decomposition $Z=X_{K}+Y$ with $Y(H)=0$ and $\frac{\partial K}{\partial p_{1}}=0$. As in the proof of proposition 2, we need $X_{H}(K)=-Z(H)=-Z_{q_{2}}\left(q_{2}, p_{1}, p_{2}\right) \frac{\partial H}{\partial q_{2}}-Z_{p_{2}}\left(q_{2}, p_{1}, p_{2}\right) \frac{\partial H}{\partial p_{2}}$; clearly, K cannot be independent of p_{1} for all such Z. Replacing Z by, say, $\left[\widetilde{Z}, X_{H}\right]$ does not help, so proposition 1 does not hold in this case either.

Acknowledgments

Thanks to Matt Perlmutter for useful discussions and to my coauthors on [3], in the course of which research the decomposition was discovered. This research was supported by the Marsden Fund of the Royal Society of New Zealand.

References

[1] Libermann P and Marle C-M 1987 Symplectic Geometry and Analytical Mechanics (Dordrecht: Reidel)
[2] Marsden J E and Ratiu T 2003 Introduction to Mechanics and Symmetry 2nd edn (New York: Springer)
[3] Celledoni E, McLachlan R I, McLaren D I, Owren B, Quispel G R W and Wright W M Energy-preserving integrators and the structure of B-series, in preparation

